import antigravity
print("Hello, Python!")
Easy for humans to read, easy to write c extensions, simple for beginners, complex enough to enable machine learning.
Stop here, this manual is incomplete! New sections will be filled out soon, when I trace back my steps and re-learn the language properly. For now, it is an empty shell. I focus primarily on Python 3.X in my writing, though I originally learned Python 2.
Quality Assurance frequently requires one of the following:
All of these use cases can see fantastic acceleration with just a little bit of automation. I leverage Pandas, Selenium, Docx and Xlrd, and other modules to move data between Excel Spreadsheets, Word Documents, and Selenium Actions.
If running windows, you’ll need the latest python installer. If on a GNU/Linux distribution, you’ll be able to install python3-dev
with your package manager; all tools will be installed automatically. Ensure that you have the pip package manager installed by running pip3 -v
.
Most of my python is written either in VIM or VS Code with the AutoPEP8 linter. You’ll need pylint installed to use the VS Code extension.
# Install whatever you want.
pip3 install --upgrade pip
pip3 install jupyter pylint pandas --user
# Ensure .local/bin is in your PATH.
If programming for the very first time, I’d recommend taking CodeCademy’s Learn Python 3 course, ignoring the Pro materials.
Pandas is a Python library for creating and manipulating dataframes, allowing for easy organization and processing of data. Xlrd enables easy import of excel files into Pandas Dataframe format, and manipulation is easy from there.
This simple container class holds a spreadsheet and make it easier to access and manipulate individual sheets. It is part of rcf_lib.py
class TableGlob:
filepath = ""
def __init__(self, name):
self.name = name
def importExcelTable(self, filepath):
if not self.filepath:
if( os.path.isfile(str(filepath)) and str(filepath[-4:]) == 'xlsx'):
dbg(e,"good","TblGlb","Data found, importing {0}...".format(filepath))
self.tablefile = pd.ExcelFile(filepath)
self.sheetlist = self.tablefile.sheet_names
dbg(e,"good","TblGlb","Sheets: {0}".format(self.sheetlist))
self.filepath = filepath
return True
else:
dbg(e,"fail","TblGlb","Path incorrect or table invalid!")
return False
else:
dbg(e,"fail","TblGlb","Table already imported!")
return False
def sheets(self):
return self.sheetlist
# Returns a pandas dataframe from the excel sheet specified.
def getdf(self, sheetid):
if str(sheetid) in self.sheetlist:
return self.tablefile.parse(sheetid)
# Mostly for ensuring import was successful.
def dataShapeTuple(self):
tuples = []
for sheetid in self.sheetlist:
temptable = self.getdf(str(sheetid))
tuples.append((temptable.shape[0],temptable.shape[1]))
dbg(e,"good","TblGlb","Data Shape (ROW,COL): {0}".format(tuples))
return tuples
The following code strips data from tables generated by the Microsoft TFS work tracking bureaucratic engine, and reassembles it into partial documentation.
#!/bin/python3
'''
TFSDataToSectionalTemplateV2.py
2018 04
This program simply strips useful data from an excel file
and structures it as rich text for placement into a word
document for Release Documentation.
Changelog:
V0:
- Began development.
- Implemented excel spreadsheet import.
- Implemented excel spreadsheet processing.
- Implemented command line output.
V1:
- Added docx package.
- Implemented stylized word document export.
V2:
- Added 'column order resilience,' spreadsheet can be less structured.
- Improved table output.
- Added more output and instructions for coworkers.
'''
import os
import pandas as pd
from docx import Document
from docx.shared import Inches
#COLUMN VARIABLES:
cID=0
cITEMTYPE=0
cTITLE=0
#SETUP AND SPREADSHEET IMPORT:
def excelData():
spreadsheet = pd.ExcelFile('tfsdata.xlsx')
dataframe = spreadsheet.parse('Sheet1')
return(dataframe)
def excelOutputSetup():
writer = pd.ExcelWriter('formattedOutput.xlsx', engine='xlsxwriter')
return(writer)
print("TFS Excel To Word Template Translator")
print("Ensure this tool is placed in the same directory as 'tfsdata.xlsx'")
if(os.path.isfile('tfsdata.xlsx')):
print("Data found, processing.")
data = excelData()
else:
print("ERROR: 'tfsdata.xlsx' not found! Exiting.")
exit()
#Parse columns:
print("Data shape: x:"+str(data.shape[0])+" y:"+str(data.shape[1]))
titles=data.columns.tolist()
print(titles)
index=0
for title in titles:
if(title == 'ID'):
cID=index
elif(title == 'Work Item Type'):
cITEMTYPE=index
elif(title == 'Title'):
cTITLE=index
index+=1
#CREATE DOCUMENT
if(os.path.isfile("Release_Template.docx")):
os.remove("Release_Template.docx")
doc = Document("redactedT.docx")
styles=doc.styles
heading=doc.add_heading()
#TABLE WRITER
def writeTable():
if(len(featureDict)>0):
#heading.style = doc.styles['redacted Heading 2 - No Number']
doc.add_heading('Related User Stories', level=2)
table = doc.add_table(rows=1, cols=3)
table.style = doc.styles['Grid Table 2 Accent 2']
table.autofit = True
table.columns[0].width = Inches(0.5)
table.columns[1].width = Inches(1)
table.columns[2].width = Inches(6)
hdr_cells = table.rows[0].cells
hdr_cells[0].text = 'ID'
hdr_cells[1].text = 'Work Item Type'
hdr_cells[2].text = 'Title'
for key in featureDict:
row_cells = table.add_row().cells
row_cells[0].text = str(key)
row_cells[1].text = "User Story"
row_cells[2].text = featureDict[key]
#SECTION BODY CONTENT WRITER
def fillSection():
doc.add_paragraph("This is a line of filler body content for a generated redacted document template. TODO: REPLACE ME.")
def fillBody():
heading.style = doc.styles['redacted Heading 2 - No Number']
doc.add_heading('Additional Details One', level=2)
fillSection()
doc.add_heading('Additional Details Two', level=2)
fillSection()
#READ THROUGH TABLE AND WRITE DOCUMENT
print("\n\tWRITING DATA TO OUTPUT.DOCX\nREF#\tTITLE\n")
tableLock=True
makeTable=False
featureDict={}
for x in range(0,len(data.index)):
if(str(data.iloc[x,cITEMTYPE])=="Feature"):
#Print table for previous dict to doc:
writeTable()
fillBody()
#doc.add_page_break()
featureDict={}
print("\n\n"+str(data.iloc[x,cID])+"\t"+str(data.iloc[x,cTITLE])+"\n\t"+("-"*(len(str(data.iloc[x,cTITLE])))))
doc.add_heading(str(data.iloc[x,cTITLE]), level=1)
tableLock=False
elif(tableLock==False and str(data.iloc[x,cITEMTYPE])=="User Story"):
print(str(data.iloc[x,cID])+"\t"+str(data.iloc[x,cTITLE]))
featureDict[str(data.iloc[x,cID])] = str(data.iloc[x,cTITLE])
else:
tableLock=True
#SAVE AND CLEAN UP
writeTable()
doc.save("redacted_GeneratedReleaseX.docx")
print("\n\tGENERATION COMPLETE - SAVED AS 'redacted_GeneratedReleaseX.docx'")
print("\n\tTODO:\n\t\t-Generate table of contents.\n\t\t-Add full list of user stories.\n\t\t-Rename document.")
UnitTest is a simple module to assert that your code is functioning as designed. If building a library, the following snippet can be added. When methods are run from an external python file, nothing will happen. When run directly, the unit tests will run. Quite useful:
if __name__ == '__main__':
unittest.main()
I wrote the following test a few months ago to test if mulitilingual pages were accessible.
The program generates and appends unit tests to a class based on dictionary entries. I’m hoping to adapt it to read from an excel table and run test cases based on the table content (With the help of a human QA.)
import unittest
import selenium
from selenium import webdriver
from selenium.webdriver.support.ui import Select
from selenium.webdriver.chrome.options import Options
import time
import sys
from pyfiglet import figlet_format
from termcolor import cprint
#Options:
rev = "6.13.2"
debug = True #Set to FALSE if production.
#root = "redacted-cas-01.redacted.com" #the environment to test, without languages or cs addons.
root = "redacted.ca"
chrome_options = Options()
chrome_options.add_argument("--window-size=200,")
chrome_options.add_argument("disable-infobars")
chrome_options.add_argument("--disable-notifications")
#chrome_options.add_argument("--headless") #use when development is finished.
#Global vars
page = ""
headline_EN = "" #Or targeted term.
headline_FR = "" #Or targeted term.
def setposition(x):
#x.browser.set_window_position("100","600")
x.browser.set_window_position("50","600")
return(0)
def setsize(x):
#x.browser.set_window_size("1250","800") #DESKTOP
x.browser.set_window_size("1500","800") #DESKTOP
return(0)
#DEBUG Message functions:
#dm prints a debug message, which is hidden when debug=FALSE.
#dms prints a success message, and is included at the end of each test case.
def dm(msg):
if (debug):
print("\n"+'\033[93m'+"DEBUG: "+'\033[0m'+str(msg), end='')
def dma(msg): #append to dm
if (debug):
print(str(msg), end='')
def dms(msg):
print("\n"+'\033[92m'+"SUCCESS: "+'\033[0m'+str(msg))
#openPage opens the redacted homepage.
def openPage():
dm("Opening homepage...")
browser = webdriver.Firefox()
browser.get('http://www.redacted.ca/')
#EN/FR test case generator:
class TEST007x_LanguageToggle_X(unittest.TestCase):
dm("Container init.\n")
pagetests = {
"/your-care": ["Your Care","Vos soins"],
"/health-info": ["Public Health","sur la"],
"/science-and-research": ["Inspiring","Faire"],
"/education": ["Clinical","Formation"],
"/get-involved": ["Get Involved","Impliquez-vous"],
"/driving-change": ["Leading","agent du"],
}
def generatePageTest(name, en, fr):
def test(self):
#cprint(figlet_format(str(name), font='small')) #Enable for fun.
dm("Running w/ page:"+str(name)+" en:"+str(en)+" fr:"+str(fr)+"\n")
dm("Opening Chrome... ")
self.browser = webdriver.Chrome(options=chrome_options)
setsize(self)
setposition(self)
dma("Browser open.")
#Link to global vars
global page
global headline_EN
global headline_FR
#Assign test vars
page = name #must begin with "/"
headline_EN=en
headline_FR=fr
dm("Opening "+str(root)+str(page))
self.browser.get("https://"+str(root)+"/en"+str(page))
self.browser.execute_script("document.body.style.zoom='100%'")
self.assertIn(headline_EN, self.browser.title)
dm("English homepage confirmed.")
#Click FR toggle.
dm("Finding FR language toggle.")
langbutton = self.browser.find_element_by_link_text('FR')
dm("Clicking element:"+str(langbutton.text)+"... ")
langbutton.click()
dma("Click!")
#Check for french page.
self.assertIn(headline_FR, self.browser.title)
dm("French page confirmed.")
#Click EN toggle.
dm("Finding EN language toggle.")
langbutton_en = self.browser.find_element_by_link_text('EN')
dm("Clicking element:"+str(langbutton_en.text)+"... ")
langbutton_en.click()
dma("Click!")
#Check for english page
self.assertIn(headline_EN, self.browser.title)
dm("English page confirmed.")
dms("Language toggles on "+str(root)+str(page)+" are functional.")
dm("Teardown.")
self.browser.close()
return test
def FdynaStart():
def test(self):
dm("Opening Chrome... ")
self.browser = webdriver.Chrome(options=chrome_options)
setsize(self)
setposition(self)
dma("Browser open.")
return test
def FdynaEnd():
def test(self):
dm("Teardown.")
self.browser.close()
return test
for name, params in pagetests.items():
#dynaStart = FdynaStart()
#dynaTear = FdynaEnd()
pageTestFunction = generatePageTest(name, params[0], params[1])
#setattr(TEST007x_LanguageToggle_X, 'test_{0}_01_Startup'.format(name), dynaStart)
setattr(TEST007x_LanguageToggle_X, 'test_{0}_02_Run'.format(name), pageTestFunction)
#setattr(TEST007x_LanguageToggle_X, 'test_{0}_03_Teardown'.format(name), dynaTear)
#Run all tests:
if __name__ == '__main__':
print('\033[91m'+"\nredacted Test Battery One\nredacted")
print("[RCF] Version: "+str(rev)+'\033[0m'+"\n\n")
unittest.main(verbosity=2)
GUIS, or Graphical User Interfaces, are designed to allow the general public to interact with the software running beneath.
https://build-system.fman.io/pyqt5-tutorial
By default, Python uses TKinter (TK Interface) to create simple GUIs. Below is an simple example of a GUI with a window, a label, and a button.
import tkinter as tk
top = tk.Tk()
l = tk.Label(top, text="Tiny GUI")
l.pack()
b = tk.Button(top,text="Button!")
b.pack()
top.title("RCF TK-Interface")
top.resizable(width=False, height=False)
top.geometry('{}x{}'.format(300, 60))
top.mainloop()
After installing MongoDB and loading http://media.mongodb.org/zips.json into the database, (or another from https://github.com/ozlerhakan/mongodb-json-files,)
I decided to use the sample datasets:
# MongoDB
import pymongo
from pymongo import MongoClient
import pandas as pd
import json
# Pretty Printing - GH: EdwardBetts/pprint_color.py
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import Terminal256Formatter
from pprint import pformat
def cprint(obj):
print(highlight(pformat(obj), PythonLexer(), Terminal256Formatter()))
print('Mongo version '+ pymongo.__version__)
client = MongoClient('localhost', 27017)
db = client.ryan
collection = db.restaurants
Mongo version 3.7.1
cursor = collection.find().sort('type_of_food',pymongo.DESCENDING).limit(3)
for doc in cursor:
cprint(doc) # This prints the JSON entity.
print()
# Up for breakfast?
pipeline = [
{
"$group":{
"_id":"$type_of_food",
"Average Rating":{"$avg":"$rating"},
"Count":{"$sum":1}
}
},
{
"$sort":{
# "Average Rating":-1,
"Count": -1
}
}
]
agg = collection.aggregate(pipeline)
ratings = pd.DataFrame(list(agg))
ratings = ratings.set_index("_id")
ratings.head(10)
Average Rating | Count | |
---|---|---|
_id | ||
Curry | 5.036158 | 902 |
Pizza | 4.914141 | 500 |
Chinese | 4.893678 | 174 |
Kebab | 4.885621 | 154 |
Fish & Chips | 5.036697 | 116 |
American | 4.617021 | 95 |
Turkish | 4.918919 | 74 |
Lebanese | 4.805970 | 70 |
Chicken | 4.410000 | 53 |
Caribbean | 4.583333 | 46 |
ratings.tail()
Average Rating | Count | |
---|---|---|
_id | ||
Pasta | 6.0 | 1 |
Cakes | 5.5 | 1 |
Nigerian | 4.5 | 1 |
Punjabi | 6.0 | 1 |
Spanish | 4.5 | 1 |
Well, that’s pretty neat.
Another one:
pipeline = [
{"$match": {"type_of_food":"Breakfast"}}
]
agg = collection.aggregate(pipeline)
breakfast = pd.DataFrame(list(agg))
breakfast
URL | _id | address | address line 2 | name | outcode | postcode | rating | type_of_food | |
---|---|---|---|---|---|---|---|---|---|
0 | http://www.just-eat.co.uk/restaurants-133-take... | 55f14312c7447c3da7051b36 | 133 Fullarton Street | Irvine | 133 Takeaway | KA12 | 8DG | Not yet rated | Breakfast |
1 | http://www.just-eat.co.uk/restaurants-alfiesca... | 55f14312c7447c3da7051d66 | 161 Helen Street | Glasgow | Alfies Cafe - Collection Only | G51 | 3HD | Not yet rated | Breakfast |
2 | http://www.just-eat.co.uk/restaurants-alldaybr... | 55f14312c7447c3da7051dc8 | 227 Lower House Lane | Liverpool | All Day Breakfast Bar | L11 | 2SF | 4.5 | Breakfast |
3 | http://www.just-eat.co.uk/restaurants-annescaf... | 55f14312c7447c3da7051f27 | 64 Anne Road | Smethwick | Anne's Cafe | B66 | 2NY | 5.5 | Breakfast |
4 | http://www.just-eat.co.uk/restaurants-benvenut... | 55f14313c7447c3da70523b7 | Bell Parade | West Wickham | Benvenuti - Collection Only | BR4 | 0RH | Not yet rated | Breakfast |
5 | http://www.just-eat.co.uk/restaurants-big-dadd... | 55f14313c7447c3da7052475 | 2 Norris Street | Cheshire | Big Daddy House | WA2 | 7RL | Not yet rated | Breakfast |
6 | http://www.just-eat.co.uk/restaurants-bigphill... | 55f14313c7447c3da7052499 | Old Club Building | Tyne and Wear | Big Phil'lers Deli | NE27 | 0EP | 5 | Breakfast |
This Stack Overflow post should give you a good idea of how to import the json on Windows and nix.
Microsoft now has free learning courses hosted on https://docs.microsoft.com/en-gb/learn/browse/?roles=developer
One course is focused on using jupyter notebooks and pytorch with azure containers. https://docs.microsoft.com/en-gb/learn/modules/interactive-deep-learning/index
CC BY-SA 4.0 - This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to share, redistribute and adapt the material as long as appropriate credit is given, and your contributions are distributed under the same license.